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Abstract—The PubMed dataset is a collection of documents archiving the emergence of growing biomedical research communities
spanning over 127 years. This document collection contains over 17 million citations rendering common data retrieval and analytic
techniques infeasible. In this paper, we outline several experimental results demonstrating high performance computing resources
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1 INTRODUCTION

The PubMed repository is a collection of documents spanning over
127 years of medical research. This collection occupies a unique niche
in research history. Within its body, the stories of the emergence of
growing research communities can be found – with the right set of
tools. In this report we document initial informatics research efforts to
probe this document collection utilizing the Titan Scalable Informatics
Toolkit. We couple the Titan algorithms with the VisTrails system to
provide improved user interaction, flexibility and provenance tracking
capabilities within an end-user application. In this paper e present re-
sults using high performance computing algorithms for data retrieval
and analytics and provide some comparison and initial benchmarking
of these capabilities to bound our expectations as the research contin-
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ues forward.

Contributions This paper makes the following contributions to the
research community:

• We present an outline of capabilities housed within the Titan
toolkit for informatic analysis of large document caches.

• We present a coupled environment for user interaction using the
Titan toolkit and the VisTrails workflow and provenance man-
agement system.

• We demonstrate tests and scalability studies for latent semantic
analysis (LSA) and latent Dirichlet allocation (LDA) pipelines
using the ParaText application in Titan.

• We describe VisTrails packages for broad-based queries against
the PubMed data.

• We show several visualizations highlighting the scalability and
flexibility of the Titan tools and algorithms for accessing and
addressing large data sets.

This paper is organized as follows: we provide some brief back-
ground and statistics on the PubMed document collection, as well as
capability descriptions for the Titan toolkit and the VisTrails applica-
tion in Section 2. In Section 3, we discuss the ParaText application
within Titan and the high performance computing environment uti-
lized to provide the testing and scalability studies. Section 4 provides
discussion on the specific data analytics tasks performed. In section 5,
we examine results of the PubMed analyses and make recommenda-
tions for improvements. Sections 6 and 7 present some future direc-
tions for this work and concluding remarks, respectively.

2 BACKGROUND AND RELATED WORKS

Informatics and analytics are rapidly growing areas of research in the
scientific, academic and commercial realms. With available data grow-
ing at exponential rates, tools to effectively analyze the wealth of data
are in high demand. In this section, we discuss the PubMed dataset



and provide some high level statistics and descriptions of the data con-
tained in this collection. We will also provide capability descriptions
of the Titan toolkit and the VisTrails applications which were utilized
in this effort.

2.1 The PubMed document collection

PubMed is a free database of citations, abstracts, and some full text
articles of life science and biomedical topics provided by the U.S. Na-
tional Library of Medicine. The PubMed document collection is a his-
torical trove of primarily biomedical research spanning the past 127
years. The dataset contains references for 17 million articles, of which
10.5 million have included abstracts. The dataset references 9.3 mil-
lion authors, 831 thousand funding sources, 1.5 million journal issues,
and 6.3 million institutions. While each of the articles contained in the
collection is unique, the technical nature of the documents highlight
textual difficulties that are also unique. For instance, it is difficult to
eliminate overlap due to mis-spellings, alternate naming conventions,
empty fields, hyphenation and acronym synchronization to get a com-
pletely accurate representation of the other corpus-specific statistics.

2.2 The Titan Toolkit

The Titan Informatics Toolkit is a collaborative effort led by the Scal-
able Analysis and Visualization Department at Sandia National Lab-
oratories. The Titan project is a significant expansion of the Visual-
ization ToolKit (VTK) [18] to support the ingestion, processing, and
display of informatics data. VTK is the core engine for many of the
scientific visualization tools developed at the U.S. Department of En-
ergy’s National Laboratories, including both the ParaView [17] and
VisIt [19] projects. Historically, the Titan project represents one of the
first software development efforts to systematically address the merg-
ing of scientific visualization and information visualization on a sub-
stantive level.

VTK utilizes a dataflow paradigm for development of modular and
reusable code components. The dataflow model enables flexible con-
figuration of algorithms into pipelines. By leveraging this structure,
Titan provides a flexible, component-based pipeline architecture for
the integration and deployment of algorithms in the fields of cyber
data, semantic graph and information analysis (see Figure 1). VTK
also provides a parallel client-server layer, making it an excellent
framework for performing scalable data analysis on distributed mem-
ory platforms. The combination of algorithms and architectures for vi-
sualization and analysis of both scientific simulations and informatics
data is already proving its worth in the form of functionality, flexibility
and breadth across multiple disciplines.

Titan also integrates the capabilities of a series of highly func-
tional open-source toolkits, including graph algorithms (Boost Graph
Library [23]), linear algebra (Trilinos[22]), named entity recognition
(StanfordNER[24, 13]), MatLab [20, 14], ‘R’ statistics [16], Proto-
Vis [4], clustering (GMeans [11, 8, 10, 9]) and others. Titan compo-
nents are written in C++, as are new additions to the toolkit. These
components can be used directly from C++ or through automatically-
generated bindings for Python, Java and Tcl.

Titan includes a growing list of algorithms and helper classes. At
the time of this writing, the set of tools available include:

• Readers - Dimacs, DOT, GXL, Chaco, XML, Tulip, CSV, fixed-
width and delimited text (including Unicode), ISI, RIS, Palantir
XML, OWL, JSONPlus, PDF (using xpdf), and MS Word (using
antiword)

• Database Connectors - MySQL, PostgreSQL, Oracle, SQLite,
ODBC and others

• Graph Algorithms - biconnected components, Brandes centrality,
breadth-first search, connected components, minimum spanning
tree, wCNM community detection, CSG search, and S-T search

• Linear Algebra - MapReduce, TPP/PARAFAC, QR decomposi-
tion, SVD, CCA and kCCA
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Fig. 1. The Titan workflow paradigm. Data is ingested, modified, pro-
cessed and eventually visualized utilizing a pipeline framework.

• Graph Layout Algorithms - GSpace, user-assigned coordinates,
circular layout, clustered, community-clustered, cone, con-
strained, cosmic tree, fast 2D, force-directed, random, Fruchter-
man and Reingold (simple2D), space-filling curve, tree layout
(standard and radial), tree orbit, tree ring, tree map, and icicle
layout

• Text Analysis Algorithms - LSA, LDA, entity extraction, MIME
type detection, case folding, frequency matrix weighting and fil-
tering, n-gram extraction, XML processing, tokenization, dictio-
naries, cosine and Jensen-Shannon similarity computation

• Web Integration - Apache module support, JavaScript, Protovis,
and JQuery

• Statistics Algorithms - descriptive, order, correlative, contin-
gency and multi-correlative statistics, PCA, and K-Means clus-
tering

• Views - Graph, hierarchical graph, tree, treemap, geo-referenced,
parallel coordinates, tree ring, icicle, images, etc.

2.3 VisTrails

VisTrails[25] is an open-source provenance management and scien-
tific workflow system that was designed to support the scientific dis-
covery process. VisTrails provides unique support for data analysis
and visualization, a comprehensive provenance infrastructure, and a
user-centered design. The system combines and substantially extends
useful features of visualization and scientific workflow systems. The
availability of provenance information enables a series of operations
that simplify exploratory processes and foster reflective reasoning. For
example, scientists can easily navigate through the space of workflows
created for a given exploration task, visually compare workflows and
their results, and explore large parameter spaces. An example of the
VisTrails user interface is shown in Figure 2.

VisTrails provides a plugin infrastructure to integrate user-defined
functions and libraries. Specifically, users can incorporate their own
visualization and simulation codes into pipelines by defining custom
modules (or wrappers). These modules are bundled into packages. A
VisTrails package is simply a collection of Python classes where each
of these classes represents a new module.



Fig. 2. The VisTrails interface showing a pipeline, or workflow, view.
Data ‘flows’ between modules. Each module contains an algorithm
that modifies the data, and individual algorithmic parameters can be ac-
cessed through the module interface (a sample interface is also shown).
The VisTrails interface provides a more intuitive option for interacting
with algorithms available in packages like the Titan Toolkit.

VisTrails was designed to manage rapidly-evolving workflows. The
provenance infrastructure maintains detailed history information about
the steps followed and data derived in the course of an exploratory
task. The system also provides extensive annotation capabilities that
allow users to enrich the automatically captured provenance. This in-
formation persists as XML files or in a relational database. Besides
enabling reproducible results, VisTrails also aids collaborative anal-
ysis by presenting an entire workflow as an artifact to be modified
and explored through an intuitive user interface. The system supports
reflective reasoning by storing temporary results, by providing users
the ability to reason about these results and to follow chains of rea-
soning backward and forward. Users can navigate workflow versions
in an intuitive way, undo changes without losing results, visually com-
pare multiple workflows and display their results side-by-side in visual
spreadsheets, and examine the actions that led to the result.

3 HIGH PERFORMANCE COMPUTING

As data sets grow toward petabytes, high performance computing is
becoming a favored tool for analytics across business, academic and
government institutions. Indeed, as data sets grow ever larger, high-
performance high-capacity systems will become a required tool. In
this section we describe the parallel platforms, tools and algorithms
that form key components of our work.

3.1 Red Sky

Red Sky is a high performance computing capacity machine at Sandia
National Laboratories consisting of 2,318 nodes, each outfitted with
two quad-core CPUs (18,544 cores total) delivering 217 Teraflops of
computing. The CPUs are 2.93 GHz quad-core Nehalem X5570 pro-
cessors with a 3D torus Infiniband interconnect. Each node has 12GB
of shared RAM (1.5GB per core). The operating system is CentOS, a
RedHat-based Linux kernel with patches.

3.2 Database System

For this project, the PubMed data set was stored in a relational
database on a Netezza(r) Performance Server 10050. The NPS [1]
is a parallel database system that partitions data sets and SQL queries
across a collection of storage and computation nodes. Queries are
similarly partitioned across the system with any necessary data inter-
change handled transparently. An ANSI SQL interface with optional
extensions for user-defined analysis functions is provided for interac-
tion. This standard, commodity-protocol interface is very valuable for
this project both because of its familiarity (which speeds integration)

and its wide adoption (which allows substitution of other implemen-
tations). For instance, the entire system can be alternatively deployed
on a single, stand-alone workstation using almost any commercial or
open-source SQL database, e. g., if we need to isolate a sensitive data
set.

On larger data sets such as PubMed, the capabilities of a parallel
database appliance become a core enabling capability. Although it
is certainly possible to design and implement an optimal out-of-core
algorithm for any given task, the wide variety of queries we need to
execute renders this approach inefficient. This is doubly true in an
analysis setting where answers must often be available promptly to be
of any value at all.

3.3 ParaText

ParaText is a system for analyzing document caches through a ‘bag-
of-words’ type of text analysis. ParaText is specifically designed for
scalable distributed memory analysis of large document collections.
The ParaText pipeline includes several text analysis components co-
ordinated within a Titan data processing pipeline where data sources,
filters, and sinks can be combined in arbitrary ways . ParaText per-
forms a full Latent Semantic Analysis (LSA) or Latent Dirichlet Allo-
cation (LDA) process including document ingestion from a number of
sources and formates, text extraction and tokenization, term-document
frequency matrix formulation and weighting, leading finally to the
LSA or LDA analysis itself.

ParaText is built as a dataflow model with all of these algorithms
linked together into data-parallel pipelines that can be replicated on
each core of a distributed-memory architecture. Individual compo-
nents within the pipeline can be replaced or rewired to explore differ-
ent computational strategies or demonstrate new functionality.

3.3.1 Document Ingestion

ParaText can use any of the Titan data readers to load documents from
a wide variety of file formats. It can also connect to a database to ingest
data as the result of an SQL query. Once documents are in memory
they undergo text extraction, tokenization (including n-gram extrac-
tion), dictionary construction, construction of a term/document fre-
quency matrix and then filtering to remove stop words and unwanted
tokens. This entire process is performed in parallel.

Document ingestion and preparation ends with the filtered
term/document frequency matrix. This is an array whose entries corre-
spond to the number of times each token appears in each separate doc-
ument minus undesirable entries such as stop words, hapaxes (terms
that appear only once) or other very high or very low-frequency to-
kens.

3.3.2 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a natural language processing tech-
nique used to analyze relationships between a set of documents and
the terms contained in the documents by producing compressed sets
of topics related to the documents and the terms.

Following the construction of the frequency matrix, the LSA
method computes a low-rank approximation to the term-document ma-
trix. The result of this rank-lowering is that several matrix dimensions
are combined to depend on more than a single term, mitigating the
problems of identifying synonymy1, and developing topical clustering
in the high dimensional space. Rank-lowering also partially mitigates
the problem of polysemy2 by weighting terms that commonly occur
together in similar dimensions.

Rank-lowering can be accomplished in one of many ways, although
the preferred method is to utilize a Singular Value Decomposition
(SVD) of the frequency matrix. By selecting the k largest singular
values from this decomposition, along with the singular vectors, we

1synonymy - different words have similar meaning or convey the same

ideas, for instance, ‘physician’ and ‘doctor’
2polysemy - same word conveys different meanings, for instance, the term

‘bed’ has a different meaning in each of these phrases: ‘river bed’ versus ‘sleep-

ing bed’



Fig. 3. Generalized equations for LSA and LDA solutions. (Image cour-
tesy of David Robinson, Sandia National Laboratories.)

obtain the rank k approximation of the original frequency matrix with
the smallest error. This approximation can be cast as a “clean” ver-
sion of the term/document matrix with low-importance noise removed.
Documents can be compared with one another by calculating distances
in this low-dimensional space.

In ParaText, LSA is implemented in two phases. The first is a
weighting phase in which the contents of the term/document matrix
are transformed to represent term importance or Shannon information
instead of raw occurrence counts. We do this with a simple parallel fil-
ter. The second is the singular value decomposition, computed using
the distributed block Krylov-Schur method from the Anasazi package
in the Trilinos solver library [22]. We compute document similarity
scores using the cosine similarity measure between document vectors
in the SVD results.

In addition to Latent Semantic Analysis, the ParaText application
within Titan contains a sister executable for performing Latent Dirich-
let Allocation (LDA) analyses. These two types of analyses are similar
in their overall function but provide some differences in the resulting
outputs.

3.3.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA), a probabilistic alternative to LSA,
has gained currency in recent years as a topic modeling algorithm.
LDA was first proposed by Blei et al. [3] as a topic model with greater
expressive power than LSA. LDA models a document as a mixture
of topics where each topic is a probability distribution over the vo-
cabulary. Proponents of LDA argue that these topics are more easily
interpreted than the singular vectors constructed by LSA. A high-level
comparison of the LSA and LDA approaches can be found in Figure 3
and in Table 1.

We use LDA to model a corpus of documents as mixtures over top-
ics by inverting this generative approach: instead of creating docu-
ments from a known set of topics, we use Bayesian inference to learn
the topic parameters from a set of training data (documents). We have
implemented a stochastic version of LDA based on collapsed Gibbs
sampling [15] in Titan with both serial and distributed-memory paral-
lel versions. We use this implementation in all phases of our project
including scaling studies and extracting topic models from Pubmed.

3.4 Scaling Studies of Text Analysis Algorithms

A major goal of this project was to demonstrate the feasibility and
scalability of the LSA and LDA pipelines within the Titan Scalable
Informatics toolkit. We used the ParaText application to run scalability
studies with both LSA and LDA using the PubMed corpus. In this
section we discuss the results of these studies.

3.4.1 Comparisons between LSA and LDA

All scalability studies outlined in this section were completed on the
Red Sky platform described in Section 3.1. As described previously,
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Fig. 4. Single processor runs of the LSA pipeline with increasing num-
ber of abstracts. Some non-linear behaviour is present in increasing
numbers of abstracts, while rank designation has little affect on timing.
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Fig. 5. Single processor runs of the LDA pipeline with increasing number
of abstracts. Timing behaviour appears perfectly linear for increasing
numbers of abstracts, while slope of the timing is highly dependent on
number of topics chosen. On a single processor LSA has a large speed
advantage due to its highly optimized linear-algebra core.



Table 1. Feature comparison of LSA and LDA.

LSA LDA

Mathematical
Model

Vector Space Probabilistic
(Bayesian)

Input
Term x Doc matrix Term x Doc matrix
Number of Topics Number of Concepts

Output
Term x Topic matrix Term x Concept matrix
Topic Weights Concept x Doc matrix
Topic x Doc matrix

Typical Im-
plementation

Singular Value De-
composition

Markov Chain Monte
Carlo or Variational In-
ference

Handling
New Docu-
ments

Recompute from
scratch (some work on
fast updates)

Quick, incremental up-
date

Deterministic? Yes - SVD has one cor-
rect answer

Theoretically, no; in
practice, yes

Polysemy Limited support Yes
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Fig. 6. Comparison of LSA (red) and LDA (blue) algorithms showing
increasing work load vs. time to completion. Shown here are (in as-
cending order) timings for 1, 2, 4, 8 and 16 processors.

each Red Sky node consists of two quad-core processors sharing 12Gb
of memory. Apart from minor OS overhead, each processor core thus
has 1.5Gb of memory available to aid computation unless special run-
time parameters are specified to allocate additional memory to a given
core. In the remainder of

To begin the process of assessing scalability of the text analysis
pipelines, we started with a relatively small workload on a single pro-
cessor, gradually increasing work to assess performance. The results
of these single-processor runs for LSA and LDA are shown in Figures
4 and 5. We observe that LSA demonstrates some non-linear scaling
with increasing numbers of abstracts. LDA remains (apparently) per-
fectly linear, but the slope of the line is dependent on the number of
topics designated.

We now discuss similar studies in a multiprocessor setting. While
serial studies speak to the asymptotic complexity of LSA and LDA,
parallel scalability studies highlight the overhead of communication
and coordination as work is parceled out.

Work Scaling: In our first parallel test we measure execution time
for a given number of processors as we increase the amount of data per
processor. This is equivalent to the running test shown in Figures 4 and
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Fig. 7. Strong Scaling: The total work is held constant while the number
of processors is increased. The graph indicates a sweet spot between
reduction in computation time due to increased numbers of processors
to do the work and the communication costs between the increasing
number of processors.

5 several times, each time with a different CPU count. We show the
results in Figure 6. The key insights from this test are that (1) our im-
plementation of parallel LDA is slower than our parallel LSA code for
small data sizes and (2) LSA appears to incur spurious communication
costs for lower numbers of abstracts and higher processor counts. This
is not unreasonable: such anomalies can easily be caused by transient
OS or I/O overhead, especially with short overall execution times that
are more visibly affected by small-scale noise.

Weak Scaling: In high-performance computing, “weak scaling”
is the notion that if x processors can handle y items in z hours, 2x pro-
cessors should ideally be able to handle 2y items in the same z hours.
We tested this by choosing a data set (between 1,000 and 100,000 ab-
stracts) and measuring execution time for both LDA and LSA as we
varied the processor count from 1 to 1,000. The results are in Fig-
ure 8. Perfectly horizontal lines would represent ideal scaling. An
upward curve indicates increasing overhead from inter-process com-
munication. This, in turn, can be caused by congestion in the system
interconnect as well as increasing amounts of data required for syn-
chronization.

We see evidence of good scaling on larger amounts of data (10,000
abstracts and up). Communication overhead grows to dominate exe-
cution time for small data sizes with LSA more strongly affected than
LDA.

Strong Scaling: In contrast with weak scaling, “strong scaling” is
the notion that if a task can be completed in z hours with x processors,
a system with 2x processors could complete the same task in (ideally)
z
2 hours. That is, we choose a data size and hold it constant while in-
creasing the processor count to solve the problem in less time. Ideally,
a strong scalability study allows a user to specify a problem size and
a desired time to solution and then look up the amount of hardware
necessary to meet those constraints.

We show results in Figure 7. A horizontal line would indicate per-
fectly linear scaling. Instead we observe two phenomena. At low
processor counts, each CPU core is handling enough data that it be-
gins to bog down. We speculate that this comes from overload in the
memory hierarchy. For high processor counts, execution time begins
to rise again as each processor spends less of its time doing work and
more of its time communicating its results. In the middle we find a
sweet spot that indicates a balanced tradeoff between communication
costs and the capacity of a single node.
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Fig. 8. Weak Scaling: Work per processor is held constant (in terms
of the number of abstracts per processor) while the number of proces-
sors is increased. Perfect scaling would be shown by horizontal lines,
while increasing slope is indicative of increasing communication costs
between processors.

Unexpected Verbosity: While collecting data for the scaling stud-
ies, we found that runs on larger data sets frequently ran out of mem-
ory and failed far before the limits we anticipated. We determined that
this memory was being consumed by the term/topic array. We did not
expect this to be a bottleneck. Conventional wisdom holds that the
number of unique terms in a natural language corpus should approach
a maximum, perhaps around 200K, and would thereafter remain fixed
no matter how many documents were added. However, the PubMed
collection shows the number of unique terms continues to climb more
or less linearly with the number of documents as shown in Figure 9.
This caused one of the large state arrays to grow linearly with the num-
ber of documents instead of remaining constant as we had hoped. In
order to complete these larger runs, we had to allocate more memory
to each processor and reduce the number of cores used per node to
account for the larger term dictionaries that were being used by each
processor. The longer-term solution to the problem was to filter lower-
frequency terms out of the data set during preprocessing. We will
discuss this further in Section 3.4.2.

3.4.2 Low memory studies of LDA

Memory consumption for both LDA and LSA proved to be a major
limiting factor in our scaling studies. Since each node of Red Sky is
outfitted with 12GB of main memory and 8 processor cores, we can
use no more than 1.5GB per process if we want to take full advantage
of the CPU. When we began our first full-scale LSA and LDA runs
using all 17 million articles and a relatively low rank we found that
we needed more than half of the total memory available on each node.
This limited us to one CPU core per node out of the 8 available.

On investigation, we discovered that the bottleneck was the dense
term × topic matrix (right singular vectors for LSA, φ for LDA) ma-
trix. As shown in Figure 9, the number of unique terms in PubMed
grows as a nearly linear function of the number of articles. The dic-
tionary for all 17 million articles comprises 2.2 million distinct words,
of which over 900,000 are thapax legomena, i.e. only occur a single
time in the entire corpus. These hapaxes compose 0.1% of the 1.2
billion words in the corpus. Because of the statistical nature of LDA,
such infrequently-occurring terms will have no substantial impact on
the results. Pruning the dictionary to eliminate terms that occur fewer
than 20 times, ever, or in fewer than 5 documents reduces the size of
the dictionary to 350,000 words but only removes 0.3% of the total
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Fig. 9. Conventional wisdom indicates that the number of unique terms
in a document collection begins to tail off around 200K terms. The
PubMed collection shows the number of unique terms continues to climb
with the number of abstracts beyond 2M terms.

words in the corpus. This improves the memory footprint dramati-
cally. We also implemented a low-memory version of LDA to further
reduce this resource footprint. In this variant, we do not store the θ
and φ matrices explicitly but instead construct them directly from in-
ternal state data when writing the output to disk. This limits our LDA
process to taking a single sample from the solution space. We feel that
this is not a serious drawback: taking a single sample (as opposed to
merging multiple samples) is common practice in the LDA literature.

Pruning the dictionary by removing low occurance terms reduced
the LDA memory footprint by roughly 85%. Using the low-memory
LDA variant gained another factor of 2 improvement. Without these
modifications, the full-scale LDA runs used for the topical clustering
would have taken three days of runtime using more than 25% of the
nodes on Red Sky. Such a large job on an already heavily-used system
would take one to two weeks to schedule (i.e., will sit idle in the queue
waiting for enough processors to free up to begin running). After our
modifications, our largest LDA process took three hours on 52 nodes
(just over 2% of the machine) and was scheduled to run after less than
two hours in the queue.

4 FOCUSED DATASET EXPLORATION

In addition to our investigation of the scaling properties of LSA and
LDA, we produced several prototype explorations of the content of the
PubMed data set. Each prototype was focused on a different question
that arises during typical analysis and exploration. In this section we
describe these prototypes in the context of their driving questions.

4.1 PubMed+VisTrails: Tracking the Workflow

In many analysis scenarios, the answer to a question of interest is in-
complete without an accompanying pedigree. This pedigree must al-
low inspection of the chain of reasoning and evidence that support the
analyst’s conclusions all the way from source data to final report. In
the past this has often been a manual process aided by an analyst’s
hand-written notes and recollections. We believe that this task should
be automated as much as possible.

The VisTrails framework provides exactly this provenance through
workflow tracking. We implemented a query-construction tool that
enabled rapid interrogation of the database through questions that built
on those already asked.



Fig. 10. Vistrails application with a value list open for user input to start
a search query.

Fig. 11. Vistrails application spreadsheet output of a degree one coau-
thor query for Francis Crick.

4.1.1 Interface Overview

As discussed in Section 2.3, VisTrails provides a graphical interface
for constructing data flow pipelines comprising sources, transforma-
tions and sinks. While this model is most obviously suited for data
flow architectures such as VTK and Maya, it is equally applicable to
database exploration with only a minor change in perspective. We
need only three basic modules plus a small amount of syntactic glue.

• Value List: This module is the “source” for our data flow. It holds
a list of values that form the keys for a query as well as the name
of a field in which to search for those keys. Values can be arbi-
trary strings, numeric or alphabetic, to match any attribute in the
database such as author names, journal titles, subject keywords
or date ranges. At the beginning of an exploration the user enters
values manually into one or more value lists. Figure 10 shows an
example of a value list module.

• Query: This module is the “transformation” for our data flow. A
query module takes one-to-many value lists as input. Its param-
eters are the type of combination for the input constraints (AND
and OR) and the fields to return from the query.

• Display/Output: This module is our “sink”. It takes the output
from a Query module and displays it in a spreadsheet (see Figure
11) or tree ring view (see Figure 12). Alternately, the user can
route output into an export module that writes images or struc-
tured text to disk.

Fig. 12. Vistrails application tree ring and graph views for Francis Crick’s
degree one coauthors.

The only piece still missing is the ability to recycle the output of one
query as one or more of the inputs to another query. We achieve this
by having the Query module output automatically-populate Value List
modules. We also provide a simple “select field” module for the com-
mon case where a query returns multiple attributes for each database
row.

These components are sufficient to express questions of the form
“What values of [attributes] occur in articles for which [attribute1 is X,
Y or Z] and/or [attribute2 is A, B or C] and/or [more constraints...]?”.
This highlights the central role of articles in the PubMed data: struc-
tural relationships such as co-authorship and publication in a single
journal are exposed through chains of co-occurrence at the article
level. This is sufficient for questions like the following:

• Who are the coauthors of Francis Crick to within 2 degrees of
separation?

• In what languages (and with what frequencies) do those co-
authors write?

• In what countries are the journals in which they publish?

• What are the journal titles and article titles for the publications
in Spanish?

By linking the output of one query to the input of the next, an an-
alyst can greatly increase his or her ability to rapidly formulate and
execute complex, compound queries. The example above took about
half an hour for a subject matter expert working with a software de-
veloper. The majority of that time was spent studying and interpreting
the results: actual execution time totaled under 5 minutes. At every
step the workflow was preserved as an artifact that could be annotated,
replayed, saved, restored and used as a basis for future work.

4.1.2 Implementation Notes

We made extensive use of PyQt [21] and Titan (through automatically
generated Python wrappers) when building the PubMed Database Ex-
plorer. When we began, most VisTrails modules were oriented to-
ward fixed-function transformations with a small number of numeric
or Boolean parameters. While VisTrails is able to automatically gen-
erate configuration tools for such modules, we found that we needed
more targeted and customized interfaces for our use case. We grate-
fully acknowledge the support of the VisTrails development team in
helping us find the correct approaches for this customization.

4.2 Topical Clustering

In addition to the LSA and LDA scaling studies, we used LDA to
compute a topic model and document clustering over all 17 million
articles in the PubMed corpus.



Fig. 13. Progressive zooms of a topical clustering of the PubMed cor-
pus. Topics were selected and hand-labeled by a subject matter expert
into topical boxes. Each topical box contains a tag cloud of words sized
by frequency of usage within that topic. (Continued in Figure 15.)

4.2.1 Topic Model

We used the parallel LDA implementation described in Section 3.4.2
to extract models with 50 and 100 topics. Each “document” comprised
the title and abstract (if any) from a single article in the database. We
used standard rule-of-thumb values for the α and β LDA hyperpa-

rameters (0.1 for β and 50
K for α where K is the number of topics) to

encourage a topic model where documents concentrated their weight
in relatively few topics.

We observe clear, comprehensible results at K = 50 as well as
K = 100. Figure 13 shows examples of some of the topics returned.
Examining the results has yielded one crucial insight: the mixtures
of words resulting from LDA are not actually topics in the sense that
humans expect: “a matter dealt with in a text, discourse or a conversa-
tion”. Instead those pools are the ingredients for topics. For example,
a paper discussing a new class of drugs to treat cancer will comprise
frequent words from the LDA “topics” about statistics, cancer and pro-
teins, among others. To obtain document groupings that humans might
recognize as coherent we performed a further clustering step in the
LDA topic space.

At this point, it is typical to run a cosine similarity using the re-

sults of the topic model to cluster similar documents. Unfortunately,
this is an O(n2) algorithm. At full scale – that is, n = 17 million – that
expense is intolerable. We, therefore, opted to reduce the space by run-
ning a multi-stage approach (described in the next two sections). This
is accomplished by first reducing the space to n = 1000 by performing a
preprocessing step that utilizes Gaussian expectation maximization[7].
This is followed by a hierarchical agglomerative clustering step. Using
this approach we can reduce the runtime and memory costs to relative
insignificance.

4.2.2 Preprocessing via Gaussian EM

Unfortunately, hierarchical agglomerative clustering is also an O(n2)
algorithm, requiring all the pairwise cosine similarities to complete the
agglomeration process. It is typical, however, for many of the initial
agglomeration steps to merge documents that are virtually indistin-
guishable, at least from the perspective of LDA. As we are trying to
identify conceptually different document clusters, we would like to
skip these preliminary agglomerations.

We began by running Gaussian expectation maximization (EM)[7]
on the documents in the k-dimensional LDA result space. In this
particular case we used the results from the LDA run where K=100.
Our parallel EM implementation was built from Titan components and
used a MapReduce algorithm running over MPI. We constrained the
Gaussians in this case to be axis-aligned for simplicity and efficiency.

This preprocessing allows us to predict the number of pairwise sim-
ilarity calculations between nearly indistinguishable documents. We
can skip these calculations, reducing the number of calculations re-
quired in the next stage from 2.89x1014 to 1.0x106 – a reduction of
eight orders of magnitude. Depending on the data, this efficiency gain
will be somewhat reduced by the overhead of the preprocessing costs.

4.2.3 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering seeks to merge observations,
starting with the observations that are closest, as defined by some prox-
imity measure. This process is straightforward when merging indi-
vidual observations. However, as this agglomeration proceeds, it will
eventually be necessary to agglomerate groups of these observations
together. In this case, the proximity between these agglomerated clus-
ters is not so clear. There are various ways of perceiving the proximity,
or linkages, between clusters.

• Single-linkage defines the proximity between two clusters as the
proximity of their closest points. This method will have a pe-
culiar effect in the presence of outliers. Clusters can be deemed
close to each other simply because they have outliers that are
close, even if all the other members of the cluster are far apart.
This process can be repeated many times, producing an agglom-
eration that might be counter-intuitive. This process is called
chaining. For many applications, chaining is not a desirable ef-
fect.

• Complete-linkage defines inter-cluster proximity as the proxim-
ity of the farthest points. Like single-linkage, complete-linkage
also suffers in the presence of outliers, although in an opposite
manner. Clusters that would intuitively be consider close can be
deemed far because of their outliers.

• Average or centroid-linkage defines the proximity of two clus-
ters as the proximity of the centroids of the two clusters. This
method is more robust than single and complete linkage in that
the presence of outliers is mitigated by the other observations
that compose the cluster.

• Group-average-linkage is the average proximity between the ob-
servations from one cluster to the observations in another. Sim-
ilar to average-linkage, group-average-linkage is robust in the
presence of outliers. In some ways, it is more ‘democratic’, in
that every observation contributes directly to the final proxim-
ity, whereas with average-linkage, a ‘representative’ (centroid) is
chosen. Generally, this may be unimportant, but could be a factor
if the resultant cluster agglomerations are not hyper-ellipsoidal.



Fig. 14. Chart showing declining similarity scores between successive
merges during the hierarchical agglomerative clustering phase. Values
along the x-axis are number of merges, while values along the y-axis
indicate the similarity between merged clusters.

There are many other types of linkages available and the “best link-
age” is often very application-dependent. We decided to use the group-
average linkage, as it is more robust in the presence of outliers than sin-
gle and complete linkage. In addition, its ‘democratic’ nature suggests
that it may be more accurate in this domain than the ‘representative’
average-linkage algorithm. We have implemented a method of cal-
culating group-average linkage that does not require recalculating the
pairwise proximities between the elements of the merged clusters on
each iteration, and therefore is as efficient as the three other linkages.

4.2.4 How Many Clusters?

An advantage of hierarchical agglomerative clustering is that it pro-
vides metrics as to the quality of our different clustering levels. Figure
14 shows the similarity value for each successive merge, starting with
1000 clusters of nearly indistinguishable documents and ending with
one cluster containing the entire corpus. The smoothness of the curve
between about 100 and 850 merges suggests that there may be more
than one “right” number of clusters depending on the goals and knowl-
edge of the user. This suggests that the clustering granularity should
be exposed to the user.

4.2.5 Performance

We ran the LDA and Gaussian EM steps on the Red Sky capacity
cluster. For 100 topics, LDA took 102 minutes using 340 CPU cores
(43 nodes) using our low-memory variant. The Gaussian EM run took
413 iterations to converge over approximately 15 hours on 2048 cores
(256 nodes). This reduces our efficiency gains from 7 to about 3 or 4
orders of magnitude.

One obvious possibility is to use simpler preprocessing techniques
such as k-means instead of the highly expressive but computationally
expensive Gaussian EM. This could allow us to salvage one or two
orders of magnitude improvement, depending on the data. Neverthe-
less, we anticipate that clustering 17 million points in 100-dimensional
space will always be an expensive operation.

The hierarchical agglomeration step has comparatively minimal
hardware and software requirements. It took 3.1 seconds to run on
a laptop using only one CPU core. The input to this process was the
set of 1000 clusters that we computed using Gaussian EM. We have
shown the final results for a single tag cloud cluster in Figure 15.

4.3 Coauthor Clustering

In contrast to the topical clustering, which derives from the content of
the articles in the data set, we also chose to investigate the clustering

Fig. 15. (Continued from Figure 13.) Progressive zooms of a topi-
cal clustering of the PubMed corpus. Topics were selected and hand-
labeled by a subject matter expert into topical boxes. Each topical box
contains a tag cloud of words sized by frequency of usage within that
topic.

of authors into communities. We derive these communities from the
structure of the articles in the database.

We begin with a co-authorship graph. Each unique author in the
database becomes a node in the graph. An undirected edge is present
between nodes for any two authors who appear together on at least
one paper. Edges are assigned weights equal to the number of co-
occurrences of the corresponding authors.

We then use the weighted Clauset-Newman-Moore community-
finding (wCNM) algorithm [2] to identify clusters of authors within
this graph. Briefly, the wCNM algorithm proceeds as follows. First,
each node V in the graph G=(V,E) is assigned to its own cluster. Sec-
ond, we repeatedly merge the two clusters whose union produces the
largest increase in the weighted modularity [2] of the induced graph.
We continue merging communities until any further join operations
would decrease the overall modularity. At that point we stop, label
each connected component in the graph as a community, and output
this labeling.

We chose to ignore nodes in the graph with degree higher than 50.
These nodes almost always correspond to authors with very common
names such as S. Kumar, R. Williams or H. Li. It is highly likely that
these nodes represent several individuals with the same name who are
incorrectly identified as being the same person. This is another of the
consequences of “dirty” input data: PubMed does not provide a way
to determine whether two different occurrences of any name repre-
sent the same individual. In the absence of a simple, robust way to
perform this disambiguation, we choose to ignore high-degree nodes
(individuals with more than 50 co-author links). We justify this ad-hoc
decision as follows. First, highly-connected nodes have relatively low
impact on the communities detected by the wCNM algorithm. Sec-
ond, if a record is an agglomeration of publications by different people
with identical names, keeping the node amounts to using known-to-be-
incorrect data. Since this project did not encompass entity resolution
or disambiguation, we felt that the cleanest approach was to ignore
such nodes. In a situation where these methods were employed in ser-



Fig. 16. Progressive zooms of a coauthor clustering of the PubMed
corpus. Topics were selected and hand-labeled by a subject matter
expert (large circles). Coauthors are clustered within each topic, and
grouped by country. These cluster groups are then circle-packed within
the larger topical clustering. (Continued in Figures 17 and 18.)

vice of an actual analysis this issue would require far more attention.

4.3.1 Results from wCNM

The co-author graph for PubMed contains 9.1 million vertices (one
for each author in the database) and 84.3 million edges. We were able
to run wCNM on one processor of a workstation with 64 gigabytes
of main memory. The weighting stage took approximately two hours
to complete. The hierarchical merge stage proceeded steadily for the
first 7 million steps (out of 9 million total) and then slowed down dra-
matically for reasons we discuss later in this section. Since wCNM is
a greedy algorithm that considers merges in decreasing order of im-
portance, we believe these first seven million merges capture the most
important community structures among the best-connected authors.

The wCNM algorithm produced many clusters with 1-10 members
and a few clusters with hundreds of thousands of members. While this
may or may not indicate a bug in the implementation, we know from
sociology that coherent communities rarely have more than 150-250
members[12], and certainly do not grow to hundreds of thousands.
In an attempt to derive socially meaningful clusterings, we stopped
the wCNM merge process and declared a community whenever a join
operation would increase a group’s size above 150 members. We also
imposed a lower bound of 10 members on the size of a research group
for convenience.

Given these constraints, wCNM yielded 64,346 distinct clusters en-
compassing 5.8 million of the 9.1 million authors in PubMed. We fur-
ther group these clusters by the most common category of vocabulary
in their publications. Figures 16, 17 and 18 illustrate this clustering at
increasing levels of detail.

The wCNM algorithm uses a precomputation phase to set edge
weights. A priori edge weights can also be used to seed this pro-
cess, but in this case, we computed derived weights for this clustering.
These weights are based on two fundamental structures in the graph:
3-cycles (or“triangles”) and 4-cycles (or “rectangles”). Enumerating
all triangles in the graph is a linear-time operation, and is implemented

Fig. 17. (Continued from Figure 16.) Progressive zooms of a coau-
thor clustering of the PubMed corpus. Topics were selected and hand-
labeled by a subject matter expert (large circles). Coauthors are clus-
tered within each topic, and grouped by country. These cluster groups
are then circle-packed within the larger topical clustering. (See also
Figure 18.)

to run in parallel. In the PubMed experiments, however, we ran single-
threaded on a 64GB workstation. The time spent in triangle-finding
times is in the noise, compared to the other computations. Rectan-
gle finding is much more challenging. Parallel algorithms exist for
rectangle finding in MTGL, but can be memory intensive. A degree
threshold is selected that eliminates consideration of vertices of suffi-
ciently high degree. The current implementation also explicitly stores
objects called “fake edges.” These are selected members of the set of
edges in the complement of the graph.

By experimentation, we selected a degree threshold of 50, and com-
puted wCNM weights on the PubMed graph allowing storage for fake
edges of six times the size of the edge set of the graph. A direct
relationship exists between these parameters: when we attempted to
change the degree threshold to 100, the amount of space required for
fake edges exceeded workstation memory. With feasible parameter
settings (50, 6), our single threaded running time for rectangle enu-
meration was approximately two hours.

It should be noted that there is potential for running an order of
magnitude, or more, faster on the Cray XMT. We did not attempt this
during the PubMed experiment. However, we did attempt to imple-
ment another rectangle enumeration algorithm that promises to use
much less space and can still be run with parallel processing. Unfortu-
nately, during our experimentation we found that the new algorithm is
designed to enumerate all rectangles without a degree threshold, and
the number of rectangles is explosive without this limitation. Addi-
tional experimentation with degree thresholding is needed before this
algorithm will be practical. This new algorithm, however, will enable
efficient use of the XMT platform without excessive memory require-
ments. Edge weighting with this algorithm would be reduced from
hours to minutes.

The second phase of the wCNM algorithm is a long sequence of
agglomerative merging steps. All vertices initially reside in singleton
communities. The CNM algorithm [6] selects successive merges in
a greedy manner. Unfortunately, CNM is also known to produce un-



Fig. 18. (Continued from Figures 16 and 17.) Progressive zooms of
a coauthor clustering of the PubMed corpus. Topics were selected
and hand-labeled by a subject matter expert (large circles). Coauthors
are clustered within each topic, and grouped by country. These cluster
groups are then circle-packed within the larger topical clustering.

balanced dendrograms, which can severely impact running time. To
address this problem, Wakita and Tsurumi proposed a new factor in
the objective function called a “consolidation ratio.” This ratio penal-
izes unbalanced merges (e.g., those between a community with few
vertices and one with many vertices). Our work in the PubMed ex-
periment showed that while well-intentioned, Wakita and Tsurumi’s
consolidation ratio is unable to correct the unbalanced merging prob-
lem. Therefore, we augmented their idea by raising the consolida-
tion ratio (a fraction between 0 and 1) to the fifth power, making the
penalty for unbalanced merges extreme. Unfortunately, even this solu-
tion was inadequate for the PubMed dataset. Of nine million merges,
the first (approximately) six million complete within two hours, but
the remaining unbalanced merges dominate, rendering the completion
of all merges a quadratic-time computation that is not feasible for ef-
ficient completion of the clustering.

Parallelizing the merging process, or developing an alternative
method, remains open research. A potential and simple surrogate
method is intriguing: simply sort the edges by wCNM weight and
determine the sequence of merges based on the sorted order. Parallel
sorting is optimized on the Cray XMT, thus lending some credance to
this approach; however, this method remains to be tested and evaluated
against the quality of the resulting solutions.

4.4 Cross Country Authorship Geo-Visualization

The articles in the Pubmed data set have an affiliation field where
country of origin information can be extracted. The affiliation field is
generally where the authors of the article list the institution they were
associated with where the research was conducted. Each Pubmed ar-
ticle is associated with a journal where the article was published, and

Fig. 19. Protovis webpage visualization of the Pubmed cross country
authorship data. The country China is currently selected, which shows
the directed graph of cross country authorship for this country.

each journal in turn has country of origin information. By combining
these two sources of country of origin information, we produced a di-
rected graph where the graph nodes represent countries and the graph
edges represent a weighted number of articles. The source of a di-
rected graph edge is associated with the number of articles published
by the source country in a journal affiliated with the target country of
the graph edge.

To visualize the directed graph of Pubmed cross country authorship,
we developed an interactive website using the Stanford Protovis [4]
Javascript toolkit. A screen capture of the webpage is shown in Figure
19. The webpage is a geovisualization where countries are colored on
a white to red scale of the weighted number of articles published by
the country. Hovering the mouse over a country displays a table of the
top collaborator countries associated with this country. Clicking the
mouse on a country causes the directed graph to be drawn for the se-
lected country and its collaborator countries. Countries not connected
by this directed graph are made invisible to aid visual clarity. The size
of the blue dots in the interior of each country represent the relative
size of the weighted number of articles.

5 DISCUSSION

The process of generating the visualization presented in the last section
has been a learning process. In this section, we discuss several of the
lessons learned from this project in terms of ongoing issues and items
that should be addressed with each project.

5.1 HPC Resource Scheduling

We observed that HPC informatics jobs often have scheduling needs at
odds with the way large parallel systems are managed for engineering
and simulation workloads. Engineering projects often have timelines
measured in months. Very large simulations have sufficiently large
setup and planning costs and sufficiently long run times that they can
be anticipated and scheduled far in advance. By contrast, informa-
tion exploration applications often need a medium-to-large amount of
processing power for a very short time and on very short notice.

The lesson we learned from this effort was that the hardware needs
of our codes, especially memory, are of paramount importance. When
we ran the scaling studies of LSA and LDA using larger data sets,
we used all 12GB of memory on a single node for a single process.
The other 7 CPU cores on that node sat idle. This bottleneck resulted
in queue times of six to eight days for jobs that processed the entire
PubMed data set. After we implemented low-memory LDA, the same
jobs on the same data generally began execution within one hour.



5.2 Working With PubMed Data

Working with document collections that are not your own often
presents some unique challenges. In this section, we discuss items per-
tinent to working with the PubMed document collection and database.

5.2.1 Database Organization

In the central PubMed repository operated by NIH, the article is the
central entity around which everything else is organized. Each article
has the following attributes:

• An article title

• An abstract

• A list of authors

• The journal issue in which the article appeared, including

– The journal title

– The journal’s language

– Country of publication

– Volume and issue

– Date of publication

• A list of subject descriptors (MeSH keywords)

• A list of investigators

• A list of funding sources (usually grants) that supported the work
in the article

• A list of affiliations (but, see also Section 5.2.2)

People (authors and investigators) are identified by full names (fore-
name, first, middle and last names, plus a suffix like Jr.). It is conven-
tional in PubMed to identify an author with their initials plus family
name. For example, the first two authors of this paper would appear in
PubMed as AT Wilson and MW Trahan.

We use a star schema to represent PubMed data in our database.
We assign globally unique identifiers to articles, authors, investigators,
journal issues, subject keywords and funding sources. This raises the
important issue of entity disambiguation. We will discuss this further
in Section 5.2.2.

5.2.2 Cleaning the Data

Like many real-world data sets, the PubMed repository has properties
that require human attention before unsupervised clustering and mod-
eling algorithms may be applied. In this section we briefly discuss
the issues in cleaning the data and rendering it amenable to efficient
queries and analysis.

At a high level the PubMed data set is very well organized. We
obtained the data in XML format along with a corresponding schema
(http://www.nlm.nih.gov/bsd/licensee/data elements doc.html ). This
immediately removes much of the difficulty in data cleaning. We en-
counter problems, however, when we inspect the actual data values.
Fields are often missing, including critical information like an arti-
cle’s title or authors. Many articles have title attributes such as “[no
title supplied]” or “[title unavailable]”. We chose to leave these un-
changed in the database and filter them out at a later stage.

When fields in the schema are populated they can be difficult to
read. We encountered a number of different character sets including
ASCII, Latin-9 and at least three variants of Unicode (UTF-16 and
UTF-8 in two different normalizations). We were able to deal with
some of this, especially the differing Unicode representations, by pro-
cessing the data using a Python script that had strong built-in support
for Unicode. Even so, there remained records in the data set that re-
quired manual correction before they could be reliably parsed.

Last and not least, even when a field in the database is populated
and is encoded in a well-supported character set, its contents may not

Fig. 20. Example of a common affilitations page with formatting. This is
a screen capture of a PDF of one of the papers in the PubMed repository
as originally published. Its structure is clear and evident and includes
links back to the list of authors in the form of the superscripted numbers
before each entry. Compare with Table 2.

be usable. The most prominent example of this in PubMed is the Af-
filiations attribute on each article that lists institutions for each author.
In print-ready publications this information is typically organized into
a list where each element is explicitly associated with one or more au-
thors. See Figure 20 for an example. This structure is not present in
the data retrieved from PubMed. We have instead a text dump of the
affiliations list (see Table 2). In some cases a few simple heuristics
suffice to separate these lists into their components. For example, ad-
dresses in the United States will often end with the name of a state
or a ZIP code. Addresses elsewhere will often end with the name of a
country. However, there are many more cases where this strategy fails.
Since there is no strictly standardized format for affiliations, a single
location may appear several times using different addresses (including
permutations of a single address), different spellings and different lan-
guages. Even if we were able to overcome all these difficulties, one
paramount problem remains: the mapping from institution to author is
not present at all in the data.

In discussions with our colleagues we came to understand that
PubMed is a remarkably clean example of a real-world data set. This
leads us to conclude that data curation is a necessary fact of life rather
than a marginal inconvenience. We assert that any research or analysis
effort that will make heavy algorithmic use of real-world data must in-
clude data cleaning and ingestion explicitly in its plans by dedicating
both time and money to the task.

5.2.3 Entity Resolution (Lack Thereof)

Worldwide, there are many different ways to write names and street
addresses. Portions can be abbreviated or not (’J. F. Shepherd’, ’J.
Shepherd’ or ’Jason Shepherd’), differently ordered (whether an in-
dividual’s family name is written first or last), differently phrased



Research Associate Professor, Department of Plant Microbiology
and Pathology, University of Missouri, Columbia, MO 65211.
Current address: Research Plant Pathologist, USDA ARS Crop
Genetics and Production Unit, Jackson, TN 38301 Research As-
sociate, Department of Plant Pathology, The Ohio State Univer-
sity, Columbus, OH 43210. Current address: Product Labels
Manager, Monsanto, St. Louis, MO 63167 Professor Agronomist,
Department of Horticulture and Crop Science, The Ohio State
University, Columbus, OH 43210 Research Associate, Depart-
ment of Plant Pathology, Iowa State University. Current address:
Coordinator, Master Gardener Program, Department of Botany
and Plant Pathology, Purdue University, West Lafayette, IN
47907 Research Plant Pathologist, USDA, ARS Soybean/Maize
Germplasm, Pathology, Genetics Research Unit, and Professor,
Department of Crop Sciences, University of Illinois, Urbana, IL
61801 Professor, Department of Plant Pathology, University of
Wisconsin, Madision, West Lafayette, WI 53706 Research Ex-
tension Nematologist, Department of Entomology, Purdue Uni-
versity, West Lafayette, IN 47907 Professor, Department of Ento-
mology, Purdue University, West Lafayette, IN 47907 Professor,
Department of Plant Pathology, Kansas State University, Man-
hattan, KS 66506 Associate Professor, Department of Entomol-
ogy, Michigan State University, East Lansing, MI 48824 Asso-
ciate Professor, Department of Plant Microbiology and Pathology,
University of Missouri, Columbia, MO 65211. Current address:
Professor, Department Crop Sciences, University of Illinois, Ur-
bana, IL 61801 Professor Emeritus, Department of Plant Pathol-
ogy, University of Minnesota, St. Paul, MN 55108 Professor,
Department of Plant Pathology, Iowa State University, Ames, IA
50011 Research Associate, Department of Plant Pathology, The
Ohio State University, Columbus, OH 43210. Current address:
Associate Professor, Texas Agricultural Experimental Station, Rt.
3, Box 219, Lubbock, TX 79401 Professor Emeritus, Department
of Plant Pathology, University of Nebraska, Lincoln, NE 68583.

Table 2. An example of affiliations as actually stored in the PubMed
database. These entries are from the same paper as in Figure 20. Pars-
ing this field into separate entries, parsing each entry, and associating
entries with authors are all difficult problems in their own right.

(’China’ versus ’People’s Republic of China’) and written in different
languages. This leads to the well-known challenge of resolving en-
tities to determine whether two names or addresses refer to the same
entity.

In this project we made only a minimal attempt to resolve entities.
We corrected manually a few misspelled country names and identi-
fied authors using the semi-standard ’Shepherd JF’ format. In the
community-finding exercise, we mitigated the effects of many authors
with the same name by ignoring any node (author) with more than 50
links (publications).

Ultimately, entity resolution requires knowledge of context. For ex-
ample, graph algorithms based on citation networks can suggest that
two names refer to the same individual because of similar sets of co-
authors. This layer must also be exposed to the analyst, both for mod-
ification due to domain knowledge and awareness of the changes that
have been made to the original data. Robust entity disambiguation and
resolution remains a challenging research problem.

5.3 Large-Scale Visualizations

We have reached an era where the presentation of higher-order infor-
mation is an essential step in exploring large data sets. A corpus of ten
million documents contains too much information for a user to grasp
without some sort of guide. Moreover, from a strictly pragmatic point
of view, current high-end displays only contain 10-20 million pixels.
Even if we could condense our representation to a singel pixel per doc-
ument we would not have enough room to display everything at once.

We believe that the answer lies in offering tools for top-down as

well as bottom-up exploration of the data in combination with a large
display. A top-down perspective leads us toward topical decompo-
sitions, timelines, geographic summaries and community maps. A
bottom-up structure suggests database searches organized around key
words, specific names, and linkages through co-authorship or other af-
filiation. The use of a large high-resolution display allows us to take
either of these approaches and show different views side-by-side so
that a user can switch between them with eye movements that take
only milliseconds instead of keyboard and mouse operations that take
several seconds and demand conscious attention.

In our interactions with domain experts we have presented data on
30” LCD displays and 2-meter projection screens. The desktop moni-
tor worked well when pairing one expert user with one domain expert.
The projection screen was most valuable in allowing a group of ana-
lysts to discuss their thoughts and ideas without crowding around one
desk. We continue to investigate how best to make use of large dis-
plays.

6 FUTURE WORK

In this section, we highlight several areas of future work and improve-
ments. These efforts are currently on-going.

6.1 Larger Data Sets

In spite of the challenges posed by its scale, the PubMed data set is
relatively small compared to many corpora of real-world interest. For
example, most of the records in our data correspond to full papers
containing several thousand words instead of a few hundred. Others
such as the United States patent database can be even larger.

Such data sets pose three main challenges. First, they can be dif-
ficult to obtain. Because of the effort that goes into compiling very
large databases, their owners often require substantial licensing fees
for bulk access. Second, the basic infrastructure for working with doc-
ument collections grows to require high-performance computing in its
own right. Tasks such as computing a term/document frequency ma-
trix become out-of-core operations best suited to a database. Third,
interaction design becomes critical to usability as even the number of
clusters grows too large for easy display.

6.2 Involving Human Factors in visualization design

Interest in understanding how visualizations are interpreted by users
has been an area of growing interest for several years now with in-
creasing ability to peer into the human brain. Additionally, under-
standing the workflows that are utilized and improving the efficiency
in developing answers for specific users, along with enabling flexibil-
ity in these workflows is an area of increasing interest. These areas
are known as human factors in the visualization and softward design
processes.

Software is often developed in a prototype format to test algorith-
mic capability or in an attempt to allow a user access to functionality
to determine how well it approaches problem solution or offers new
insights. Unfortunately, prototypes are typically ‘hardened’ into prod-
ucts, and the user becomes the flexible operant in dealing with short-
comings in the product or design. Human factors studies attempt to
correct this, using an iterative approach to design and coupling soft-
ware designers with the user base, to bring more complete and usable
solutions and longevity to products. However, this process can require
extra investments of time and resources, and is often overlooked to the
potential detriment of the user community.

The PubMed project described in this paper operated under a pro-
totype development model. While many of the results hold promise
of expanded efforts, future involvement with human factors specialists
should be given increased priority.

6.3 Database alternatives

There has recently been substantial work in database-like system de-
velopment for distributed clusters of commodity hardware (clouds).
We would like to investigate the suitability of cloud-based databases
built on top of frameworks such as Hadoop [26] and BigTable [5]. In
these environments tasks such as frequency matrix construction and



filtering are easy to express. In fact, token frequency counting is one
of the standard examples of a MapReduce algorithm. However, the
relational join becomes awkward, making tools such as the PubMed
Database Explorer (described in Section 4) that relies on chains of
join operations difficult to implement. It is not yet clear what the ideal
backing store for all of these tasks would be. In addition to the algo-
rithmic structure we must also consider price and power consumption.

6.4 Web interfaces

Fueled in part by cloud computing paradigms, accessing data and vi-
sualization from a single desktop machine is becoming a source of in-
efficiency for analytics-based tools. The model utilized by the Internet
is fueling a need to have tiered architectures such that algorithms for
large datasets can run on higher performance machines, while still fos-
tering efficient access from commodity desktops and laptop comput-
ers. In this vain, web interfaces are quickly becoming the ubiquitous
fronts to the user community for many of the advanced informatics-
based visualizations. Unfortunately, this paradigm shift will come at
some cost to historical development projects as the shift is made from
historic GUI applications to applications that run within a common
web browser. During the development of the functionality reported
here, this shift was felt strongly. Converting all of the functionality
to a standard web interface has some hurdles that still need to be ad-
dressed, and this is a source of ongoing future development.

7 CONCLUSIONS

The PubMed dataset is a reasonably large collection of documents
detailing a research history of the medical community. Because of
the size of the collection, finding tools for efficient search and sum-
marization at varied levels of abstraction can be difficult and prob-
lematic. In this report, we have documented some initial informatic
research to probe this document collection utilizing the Titan infor-
matics toolkit. In some examples, we have coupled the Titan algo-
rithms with the VisTrails application to provide improved user in-
teraction, flexibility and provenance tracking capabilities to improve
the experience for an end-user capability. We also presented results
using high performance computing algorithms for data retrieval and
analytics and provide some comparison and initial benchmarking for
these capabilities to bound our expectations as the research continues
forward. These high-performance methods have included ParaText,
including LSA and LDA text analytics techniques, large graph clus-
tering, and parallelized database querying. For each of these tech-
niques, we have demonstrated a multi-resolution visualization of the
results, where zoom-in capabilities demonstrate the scale of the data
at each resolution. This research demonstrates the breadth of capabil-
ities available within the Titan toolkit, and specifically demonstrates
these capabilities at scales unmatched within the research community.
Ongoing efforts for expanding and developing these capabilities con-
tinues.

ACKNOWLEDGMENTS

The authors wish to thank Jon Berry for his expertise and time in devel-
opment and execution of the topological clustering work on the coau-
thor graphs.

REFERENCES

[1] The netezza database appliance architecture: A platform for high perfor-

mance data warehousing and analytics. White Paper, 2008.

[2] J. W. Berry, B. Hendrickson, R. A. Laviolette, and C. A. Phillips. Tol-

erating the community detection resolution limit with edge weighting.

arXiv:0903.1072v2[physics.soc-ph], Mar. 2009.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J.

Mach. Learn. Res., 3:993–1022, March 2003.

[4] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.

IEEE Transactions on Visualization and Computer Graphics (TVCG),

pages 1121–1128, Nov/Dec 2009.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed

storage system for structured data. ACM Trans. Comput. Syst., 26:4:1–

4:26, June 2008.

[6] A. Clauset, M. E. J. Newman, and C. Moore. Finding community struc-

ture in very large networks. Phys. Rev. E, 70(6):066111–+, Dec. 2004.

[7] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from in-

complete data via the EM algorithm. J. Royal Statistical Soc., Ser. B,

39(1):1–38, 1977.

[8] I. S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large doc-

ument collections. In V. K. R. Grossman, C. Kamath and R. Namburu,

editors, Data Mining for Scientific and Engineering Applications, pages

357–381. Kluwer Academic Publishers, 2001. Invited book chapter.

[9] I. S. Dhillon and Y. Guan. Clustering large and sparse co-occurrence

data. In Proceedings of the Workshop on Clustering High-Dimensional

Data and its Applications at the Third SIAM International Conference on

Data Mining, 2003.

[10] I. S. Dhillon, Y. Guan, and J. Kogan. Iterative clustering of high dimen-

sional text data augmented by local search. In Proceedings of the 2002

IEEE International Conference on Data Mining, 2002.

[11] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse

text data using clustering. Machine Learning, 42(1):143–175, Jan 2001.

[12] R. Dunbar. Grooming, Gossip and the Evolution of Language. Harvard

University Press, 1998.

[13] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local infor-

mation into information extraction systems by gibbs sampling. Proceed-

ings of the 43rd Annual Meeting of the Association for Computational

Linguistics (ACL2005), pages 363–370, 2005.

[14] A. Gilat. MATLAB: An Introduction with Applications, 2nd Ed. John

Wiley and Sons, 2004.

[15] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings

of the National Academy of Sciences, 101(suppl. 1):5228–5235, April 6,

2004.

[16] Institute for Statistics and Mathematics of the WU Wien. The R Project

for Statistical Computing. http://www.r-project.org/ [1 December

2010].

[17] Kitware, Inc. The ParaView Guide, 3rd ed. Kitware, Inc., 2008.

[18] Kitware, Inc. The VTK User’s Guide, 11th ed. Kitware, Inc., 2010.

[19] Lawrence Livermore National Laboratory. VisIt: Visualize It in Parallel

Visualization Application. https://wci.llnl.gov/codes/visit [29

March 2008].

[20] MathWorks. MATLAB Overview. http://www.mathworks.com/

products/matlab/ [1 December 2010].

[21] Riverbank Computing Limited. What is PyQt? http://www.

riverbankcomputing.co.uk/software/pyqt/intro [1 December

2010].

[22] Sandia National Laboratories. The Trilinos Project. http://trilinos.

sandia.gov [1 December 2010].

[23] J. G. Siek, L. Q. Lee, and A. Lumsdaine. The Boost Graph Library: User

Guide and Reference Manual. Addison-Wesley Professional, 2002.

[24] The Stanford Natural Language Processing Group. Named Entity Recog-

nition (NER) and Information Extraction (IE). http://nlp.stanford.

edu/ner/index.shtml [1 December 2010].

[25] VisTrails, Inc. Vistrails. http://www.vistrails.org [1 December

2010].

[26] T. White. Hadoop: The Definitive Guide.


